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To learn a subject, it helps to start with the simplest possible examples �rst.
Once you understand the simple, the complex becomes easy. A good example of
this is the case of the Hydrogen atom in physics. Without having such a simple
atom to study, much of the development of atomic physics would probably not
have been possible.

The goal here is to look at the equivalent of the Hydrogen atom for recursive
digital �lters. We will look at the simplest possible recursive �lter, a �rst order
�lter with constant coe�cients. Even though the �lter is simple, it is quite
useful in practice, especially when two or more of them are combined in various
ways. We will show how two of these �lters can be combined to produce a
second order bandpass �lter.

In what follows it is assumed that you know what the frequency response
of a �lter means and how an equation for the frequency response can be gotten
from the recursion equation for the �lter. As a quick reminder, if the input to
a linear time invariant �lter is

f [n] = einΩ (1)

then the output will be
y[n] = einΩH(Ω) (2)

where the function H(Ω) is the frequency response of the �lter. Why do we care
about the response of a �lter to this particular type of input? Well, any general
input, f [n] (at least the ones normally involved in digital �ltering applications)
can be expressed as a linear combination of these complex exponentials

f [n] =
1
2π

∫ π

−π

F (Ω)einΩdΩ (3)

where F (Ω) is the Fourier transform of f [n]

F (Ω) =
∞∑

n=−∞
f [n]e−inΩ (4)
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So the output is then simply

y[n] =
1
2π

∫ π

−π

H(Ω)F (Ω)einΩdΩ (5)

For more background on this see Fourier Transform of a Sampled Signal
(http://www.exstrom.com/journal/sigproc/ftsampled.pdf).

It should be noted however that this simple relationship where the input of
eq. 1 produces the output of eq. 2 is only true if the input started at n = −∞
and the �lter has been on for all time in the past. In practice this is of course
never true. The input and the �ltering start at some time designated as n = 0.
In this case the output is still given by eq. 2 but now the response function
H(Ω) is a function of n also

y[n] = einΩH(n, Ω) (6)
This is the startup response of the �lter wheras eq. 2 is the long term or steady
state response. As n becomes large, H(n, Ω) becomes equal to H(Ω).

lim
n→∞

H(n, Ω) = H(Ω) (7)

So eq. 2 is a good approximation to eq. 6 when n is large. Only the steady
state frequency response will be considered in what follows. Now on to the
�lters.

The simplest possible recursive �lter that you can imagine is the �rst order
�lter whose recursion equation is

y[n]− cy[n− 1] = f [n] (8)
This �lter is the digital equivalent of a simple RC or RL analog �lter. In

the analog case the RC or RL components can be con�gured for either high or
low pass operation. The same can be done with this digital �lter by changing
the sign of the coe�cient c. For positive c we have a lowpass �lter while for
negative c we have a highpass �lter. But we can go a step further and make c
complex. Speci�cally we will de�ne c as follows

c = reiθ (9)
The frequency response of the �lter is then given by

H(Ω) =
1

1− reiθe−iΩ
(10)

and the magnitude is

|H(Ω)| = 1√
1− 2r cos(θ − Ω) + r2

(11)

which has a maximum at Ω = θ.
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Figure 1: Eq. 10 normalized for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9].

|H(θ)| = 1
|1− r| (12)

Therefore to normalize H(Ω) it should be multiplied by |1 − r|. Figure 1
shows a normalized plot of H(Ω) for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9]. Notice
that the response indicates that this is a bandpass �lter centered at Ω = π/4
and that the r parameter determines the bandwidth.

This is not something you can do with a �rst order analog �lter. You can
not combine one resistor and one capacitor or one resistor and one inductor so
as to make a bandpass �lter. We managed to turn a �rst order digital �lter into
a bandpass �lter by making the �lter coe�cient complex. It will become clear
below however, that by making the coe�cient complex we really have a second
order �lter in disguise.

By now you may be thinking: "If the �lter coe�cient is complex won't the
output also be complex?". The answer is of course yes. If the input is real,
which in most cases it will be, then the output will be complex if 0 < θ < π. So
we need to turn this complex output into a real number. How do we do it and
what does the result mean?

One possibility is to just use the real part of the output. Mathematically
this means performing the following operation
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y[n] + y∗[n]
2

(13)

But what we are doing here is really just equivalent to adding the output of
two of our �rst order �lters, one with c = reiθ, the other with c = re−iθ, and
then multiplying the result by 1/2. What does this mean in terms of frequency
response? If you add the output of two �lters, the response of the result is equal
to the sum of the responses of the two �lters. For this case then, the equivalent
frequency response is given by:

H(Ω) =
1
2

(
1

1− reiθe−iΩ
+

1
1− re−iθe−iΩ

)
(14)

=
1− r cos(θ)e−iΩ

1− 2r cos(θ)e−iΩ + r2e−i2Ω

which can recognized as the frequency response of a second order �lter with
the following recursion equation:

y[n]− 2r cos(θ)y[n− 1] + r2y[n− 2] = f [n]− r cos(θ)f [n− 1] (15)
This means that by taking just the real part of the output of our �rst or-

der �lter we really get the frequency response of a second order �lter. The
normalized response is shown in �gure 2 for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9].
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Figure 2: Eq. 14 normalized for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9].
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Notice that the response is still that of a bandpass �lter with a maximum
at Ω = θ and a bandwidth controlled by the value of r. The peak magnitude
that is used to normalize the response is:

|H(θ)| = 1
|1− r|

√
1− 2r cos2(θ) + r2 cos2(θ)

1− 2r cos(2θ) + r2
(16)

Now another way to get a real number from our �lter is to just use the imag-
inary part of the output. Mathematically this means performing the following
operation

y[n]− y∗[n]
2i

(17)

This is similar to the previous case but here we are subtracting the output
of two �lters and multiplying the result by 1/2i. To �nd out what this does to
the overall frequency response we perform the same operation on the responses
of the two �lters. The equivalent response is then

H(Ω) =
1
2i

(
1

1− reiθe−iΩ
− 1

1− re−iθe−iΩ

)
(18)

=
r sin(θ)e−iΩ

1− 2r cos(θ)e−iΩ + r2e−i2Ω

which can also be recognized as the response of a second order �lter with the
following recursion equation:

y[n]− 2r cos(θ)y[n− 1] + r2y[n− 2] = r sin(θ)f [n− 1] (19)
So once again we get the frequency response of a second order �lter but this

time by taking the imaginary part of the output of a �rst order �lter. The
normalized response is shown in �gure 3 for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9].
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Figure 3: Eq. 18 normalized for θ = π/4 and r = [0.6, 0.7, 0.8, 0.9].

As before, the response is still that of a bandpass �lter centered at Ω = θ
and with bandwidth controlled by the value of r. The peak magnitude used to
normalize the response is:

|H(θ)| =
∣∣∣∣
r sin(θ)
1− r

∣∣∣∣
1√

1− 2r cos(2θ) + r2
(20)

So far we have looked at two ways to get a real number from the output of
our complex �rst order �lter, we just use either the real or imaginary part of the
output. We found that doing so, in both cases, actually gives us the frequency
response of a second order �lter with real coe�cients. It may also have occurred
to you that another way to get a real number is to just take the magnitude of
the output. The problem with this is that you always get a positive number, so
that what you have is a kind of digital recti�er which is probably not what you
want.

Let's now look at what happens if we take the output of a �rst order �lter
with coe�cient c = reiθand feed it into another such �lter with coe�cient
c∗ = re−iθ. If w[n] is the output of the �rst �lter then we have

Lw[n] = w[n]− cw[n− 1] = f [n] (21)

where the operator L has been introduced and de�ned. If y[n] is the output of
the second �lter then
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L∗y[n] = y[n]− c∗y[n− 1] = w[n] (22)
Now to see how y[n] is related to the input f [n], just apply the operator L

to this equation

LL∗y[n] = Ly[n]− c∗Ly[n− 1] = Lw[n] (23)
= y[n]− cy[n− 1]− c∗(y[n− 1]− cy[n− 2]) = f [n]

Substituting c = reiθ into this expression and simplifying gives

y[n]− 2r cos(θ)y[n− 1] + r2y[n− 2] = f [n] (24)

This is a second order �lter with frequency response

H(Ω) =
1

1− 2r cos(θ)e−iΩ + r2e−i2Ω
(25)

=
1

(1− reiθe−iΩ)(1− re−iθe−iΩ)

The second form of the response illustrates the fact that, when you feed
the output of one �lter into another, the overall response is the product of the
responses of the two �lters. This is once again a bandpass frequency response
with peak magnitude occurring at Ω = θ and bandwidth determined by r. The
peak magnitude of eq. 25 is

|H(θ)| = 1
|1− r|

√
1− 2r cos(2θ) + r2

(26)

The plot of this frequency response is identical to that shown in �gure 3.
This now is about as far as you can go with these simple �rst order �lters.

To summarize, what we have found is that if you take two �rst order �lters,
with coe�cients that are complex conjugates of one another, and combine them
in various ways, you can produce second order bandpass �lters. In the �rst
case we simply took the real part of the output of one of these �lters, which
is equivalent to adding the outputs of two conjugate �lters. We can call this
a parallel �lter combination. In the second case we took the imaginary part
of the output, which is equivalent to subtracting the outputs of two conjugate
�lters. This is also a parallel �lter combination. In the �nal case we feed the
output of one �lter into the input of a second �lter which is a serial combination
of the two �lters. It is of course possible to combine more than two such �rst
order �lters. When combining three �lters, two of them will have to be complex
conjugates of one another and the third will have to be real in order for the
�nal output to be real. Four �lters would require two conjugate pairs and so
on. Any general nth order recursive �lter can be expressed as a parallel and/or
serial combination of these �rst order �lters which really does make them the
"atoms" of recursive �lters.
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