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1 Independent Electron Approximation
Most electronic band structure calculations begin with the assumption that the
many body wavefunction of the electrons in a crystal can be expressed in terms
of one electron wavefunctions that are solutions of the one electron Schrodinger
equation (

− ~
2

2m
∇2 + U(~r)

)
Ψ~k(~r) = E(~k)Ψ~k(~r) (1)

The potential U(~r) must include the e�ect of the electron's interaction with the
other electrons in the system as well as the potential due to the nuclei. This is
known as the independent electron approximation. For a more detailed discus-
sion and justi�cation of the independent electron approximation see appendix
A.

The potential will have the periodicity of the lattice: U(~r + ~R) = U(~r),
where ~R is a lattice vector. The Hamiltonian will therefore also be periodic
H(~r + ~R) = H(~r). The solutions of the Schrodinger equation for a periodic
Hamiltonian must obey Bloch's Theorem.

Ψ~k(~r + ~R) = ei~k·~RΨ~k(~r) (2)

2 Bloch's Theorem
To prove Bloch's Theorem (for a detailed discussion of Bloch's Theorem see
Ashcroft and Mermin [1] p. 133-141), de�ne a translation operator T~R as follows:

T~Rf(~r) = f(~r + ~R) (3)

Then for Bloch's Theorem to be true Ψ~k(~r) must be an eigenfunction of T~Rwith
eigenvalue ei~k·~R. Since Ψ~k(~r) is an eigenfunction of the Hamiltonian, it will
also be an eigenfunction of T~R if H(~r) and T~Rcommute. The fact that they do
commute can be seen from the following:

T~RH(~r)Ψ~k(~r) = H(~r + ~R)Ψ~k(~r + ~R) = H(~r)Ψ~k(~r + ~R) = H(~r)T~RΨ~k(~r) (4)

To show that the eigenvalues of T~R have the form ei~k·~R note that two
successive translations are always equivalent to a single translation so that
T~RT~R = T~R+~R. This means that if λ(~R) is an eigenvalue of T~R then λ(~R)λ(~R′) =

λ(~R + ~R′). This identity is always satis�ed by λ(~R) − ei~k·~R, proving Bloch's
Theorem.

When ~R is written in terms of the primitive lattice vectors, ~R = n1~a1 +
n2~a2 + n3~a3, and ~k is written in terms of the reciprocal lattice vectors, ~k =
x1
~b1 + x2

~b2 + x3
~b3 where ~ai · ~bj = 2πδij , then ei~k·~R = ei2π(n1x1+n2x2+n3x3) =

λ(~R) = λn1(~a1)λn2(~a2)λn3(~a3) and λ(~a1) = ei2πx1 .
So far no restrictions have been placed on the vector ~k. Imposing bound-

ary conditions will limit the possible values of ~k. To determine what kind of
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boundary conditions to apply, note that in assuming a periodic potential we
have actually assumed an in�nite size crystal. Any real crystal obviously has
a �nite size and therefore surfaces that break the periodicity of the lattice. To
remove the e�ect of the surfaces the crystal is periodically extended in the direc-
tion of each of the primitive lattice vectors. This leads to the following periodic
boundary conditions:

Ψ~k(~r +Ni~ai) = Ψ~k(~r) i = 1, 2, 3 (5)

where Ni is the number of lattice points in the ~ai direction. However, from
Bloch's Theorem it must also be true that:

Ψ(~r +Ni~ai) = ei2πxiNiΨ~k(~r) (6)

Comparing the last two equations: 2πxiNi = 2πmi where mi is an integer, so
that xi = mi/Ni. Thus, for the stated periodic boundary conditions, ~k must
have the form:

~k =
m1

N1

~b1 +
m2

N2

~b2 +
m3

N3

~b3 (7)

It should also be noted that, as far as the wavefunction is concerned, two
~k vectors that are related by a reciprocal lattice vector are entirely equivalent.
To see this let ~k′ = ~k + ~G where ~G = l1~b1 + l2~b2 + l3~b3, and li is an integer,
then ei~k·~Rei ~G·~R = ei~k·~R and Ψ~k+~G(~r) = Ψ~k(~r). The ~k vectors can therefore be
con�ned to the Wigner-Seitz primitive cell of the reciprocal lattice, also known
as the �rst Brillouin zone, since any vector outside the zone di�ers from a vector
inside the zone by a reciprocal lattice vector.

3 Wannier Functions
In developing the tight-binding formalism for band structure calculations it is
convenient to write the wave function Ψ~k(~r) in terms of a function φ(~r) centered
at each of the lattice sites:

Ψ~k(~r) =
∑

~R

ei~k·~Rφ(~r − ~R) (8)

That this form satis�es Bloch's Theorem can be shown as follows:

Ψ~k(~r + ~R′) =
∑

~R

ei~k·~Rφ(~r + ~R′ − ~R)

= ei~k·~R′ ∑

~R

ei~k·(~R−~R′)φ(~r − (~R− ~R′))

= ei~k·~R′ ∑

~R

ei~k·~Rφ(~r − ~R)

= ei~k·~R′Ψ~k(~r)
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The function φ(~r) is called a Wannier function and it can always be chosen to
be orthonormal in the sense that:

∫
φ∗(~r)φ(~r − ~R)d~r = δ~R,0 (9)

In this case the properly normalized form of the wavefunction is

Ψ~k(~r) =
1√
N

∑

~R

ei~k·~Rφ(~r − ~R) (10)

where N is the number of lattice sites.

4 Wavefunction Expansion
The unknown function φ(~r) can always be expanded in terms of some complete
set of functions ψn(~r) as follows

φ(~r) =
∑

n

cnψn(~r) (11)

In general, for an arbitrary set of basis functions ψn(~r), there will be an
in�nite number of terms in the expansion. In practice however, only a �nite
number of terms are used. The closer in form the ψn(~r) are to φ(~r), the fewer the
number of terms required to represent φ(~r) with a given degree of accuracy. One
perhaps obvious choice for the ψn(~r) are the atomic wavefunctions of the isolated
atoms since these must evolve into φ(~r) as the atoms are brought together
to form a crystal (more will be said about this later). In any event, if the
representation is not exact then the cn coe�cients in the expansion will have
to be treated as variational parameters (for a review of the linear variational
method see appendix B). Using the expansion for φ(~r) the wavefunction becomes

Ψ~k(~r) =
1√
N

∑

~R

ei~k·~R ∑
n

cnψn(~r − ~R) (12)

=
1√
N

∑
n

cn
∑

~R

ei~k·~Rψn(~r − ~R)

=
∑

n

cnbn(~r)

where
bn(~r) =

1√
N

∑

~R

ei~k·~Rψn(~r − ~R) (13)
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5 The Energy Eigenvalue Equation
Evaluating the variation of the energy expectation value

E(Ψ~k) =
〈Ψ~k|H|Ψ~k〉
〈Ψ~k|Ψ~k〉

(14)

using the coe�cients as variational parameters leads to the following equation
(see appendix B) ∑

n

(Hmn − ESmn)cn = 0 (15)

This can be immediately recognized as a generalized eigenvalue problem involv-
ing the Hamiltonian matrix, H and an overlap matrix, S. The overlap matrix
elements re�ect the nonorthogonality of the basis functions and are given by:

Smn =
∫
b∗m(~r)bn(~r)d~r (16)

=
1
N

∑

~R~R′

ei~k·(~R−~R′)
∫
ψ∗m(~r − ~R′)ψn(~r − ~R)d~r

=
∑

~R

ei~k·(~R−~R′)
∫
ψ∗m(~r − ~R′)ψn(~r − ~R)d~r

=
∑

~R

ei~k·~R
∫
ψ∗m(~r)ψn(~r − ~R)d~r

If the ψn(~r) are orthonormal and there is no overlap between functions centered
at di�erent lattice sites then the overlap matrix should equal the identity matrix,
S = I.

The Hamiltonian matrix elements likewise will be given by:

Hmn =
∑

~R

ei~k·~R
∫
ψ∗m(~r)Hψn(~r − ~R)d~r (17)

6 Integral Types
The periodic nature of the potential means that it can be written as a sum of
potential functions centered on the lattice sites as follows:

U(~r) =
∑

~R

u(~r − ~R) (18)

This means that the integrals in the expression for the Hamiltonian matrix
elements will actually be a sum of integrals that can be classi�ed according to
how the two wavefunctions and the site-potential functions, u(~r), are centered on
the atoms. When the two wavefunctions and the site-potential function are all
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centered on the same atom, the integral will be called an on-site integral. An
integral with the two wavefunctions centered on one atom and the site-potential
function centered on a di�erent atom, will also be called an on-site integral
(when the integrals are later taken to be parameters the e�ect of these integrals
will be considered to have been included in the regular on-site integrals and they
will not be considered separately). When the site-potential function and one
of the wavefunctions are centered on one atom and the other wavefunction is
centered on a di�erent atom, the integral will be called a two center integral.
When the two wavefunctions and the site-potential function are all centered on
di�erent atoms, the integral will be called a three center integral.

7 The Two Center Approximation
The three center integrals are smaller and contribute less to the Hamiltonian
matrix elements than the two center integrals. It is therefore tempting to ignore
the three center terms altogether, since this greatly simpli�es the calculation.
This is known as the two center approximation. Using the two center approx-
imation the integral in Eq. 17 will then only include a sum of site-potential
functions centered on the atoms on which the wavefunctions are centered.

Evaluation of the integrals can be further simpli�ed by assuming that the
site-potential functions are spherically symmetric (this assumption holds better
for ionic solids such as NaCl than it does for metals and covalent solids such
as the diamond lattice semiconductors). In this case the functions must also
be angular momentum eigenfunctions and they can therefore be written as the
product of a radial function and a spherical harmonic.

ψn(~r) = RL(r)Y L
M (θ, φ) (19)

The angular momentum quantum numbers can then be used to characterize
the ψn(~r) so that they can be described as s-type (L = 0), p-type (L = 1),
d-type (L = 2), and so on. The angular dependence of the ψn(~r) makes them
analogous, in a way, to atomic wave functions. However, the radial part of
ψn(~r) will in general be quite di�erent than the wavefunction of the isolated
atom. The ψn(~r) will be referred to as orbitals from here on.
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Figure 1: s and p type orbitals, in the two center approximation.

Using only s and p type orbitals, and the two center approximation, the types
of integrals appearing in Eq. 17 are represented schematically in Fig. (1) for the
simplest case in which the centers of the two atoms lie on the same Cartesian
axis. The integrals are labeled using the Slater-Koster notation (ll′m) where l
and l′ give the angular momentum state of the two orbitals, and m gives the
component of the angular momentum about the axis between the two atoms.
This component is labeled as follows: s for m = 0, p for m = 1, and d for m = 2.
The integral will be zero unless m is the same for both orbitals.

Figure 2: s and p type orbitals, in the general case.

For the general case, in which the two atoms do not lie on the same Cartesian
axis, the integrals will depend on both the magnitude and direction of the vector
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between the two centers as illustrated in Fig. (2) for s and p orbitals. For
an sp integral the p orbital can be decomposed into a component along the
axis between the two atoms and a component perpendicular to the axis. The
component perpendicular to the axis will not contribute to the integral and the
integral will just equal (sps) cos q. In general let â be a unit vector along the
symmetry axis of the p orbital (pointing from the negative to the positive lobe)
and let d̂be a unit vector along the axis between the two atoms, then the sp
integral will be given by: â × d̂(sps). For a pp integral the orbitals can be
decomposed into components perpendicular and parallel to the axis between
the two atoms. Let â1and â2be unit vectors along the symmetry axes of the p
orbitals and let d̂ be a unit vector along the axis between the two atoms, then
the pp integral will be given by: (â1 · d̂)(â2 · d̂)(ppσ) + (â1 − (â1 · d̂)d̂) · (â2 −
(â2 · d̂)d̂)(ppπ). Tables of two center integrals in terms of the (ll′m) integrals
can be found in Table 1 of Slater and Koster [8] and in Harrison [3] p. 481.

At this point, to proceed with the calculation of the electronic band struc-
ture, we need to obtain the values of the (ll′m) integrals. An actual evaluation
of the integrals would require knowledge of the site-potential function and the
radial part of the expansion orbitals. A priori knowledge of these functions is
usually not available. Several methods for calculating band structures in a self-
consistent manner have been developed in this case. For an excellent review of
these methods see reference [2].

Another tack to take is to regard the (ll′m) integrals as parameters chosen
so as to �t known energies at certain k-points. This method was �rst proposed
by Slater and Koster and it is essentially an interpolation method. Nevertheless,
the accuracy of the results can, in many cases, be quite good. When using this
method the (ll′m) integrals are usually referred to as SK parameters. SK param-
eters have been determined for many elements and compounds. An extensive
source of SK parameters is the book by Papaconstantopoulos [6].

Once the (ll′m) integrals are known, the Hamiltonian and overlap matrix
elements can be calculated for a given vector and energy eigenvalues found.
For a monatomic lattice using s, p, and d orbitals the Hamiltonian and overlap
matrices will be 9x9 and we will get 9 eigenvalues at each vector. To generate an
energy band we choose a path in the Brillouin zone of the lattice and calculate
the eigenvalues at a given number of k-points along the path.

8 Appendix A: The Independent Electron Ap-
proximation

Solving for the eigenstates of a crystal is a many-body problem of extraordinary
complexity. The electrons and the nuclei all interact with one another, making
the problem impossible to solve analytically.

To get anywhere at all, some simplifying approximations have to be made.
The �rst such approximation is called the Born-Oppenheimer approximation.
The approximation states that, because the electrons are much lighter and move

8



much faster than the nuclei, the positions of the nuclei can be considered �xed
and stationary when solving for the motion of the electrons. The motion of the
electrons and the nuclei can then be solved for separately.

Within Born-Oppenheimer approximation the electrons experience a static
periodic potential due to the nuclei and coulomb interactions with each other,
so that the Hamiltonian for the electrons can then be written as:

H = − ~
2

2m

N∑

i=1

∇2
i − Ze2

N∑

i=1

∑

~R

1

|~ri − ~R|
+

1
2
e2

∑

i6=j

1
|~ri − ~rj | (20)

where the vectors ~ri are the electron coordinates and the ~R vectors are the nuclei
coordinates. The �rst term is the kinetic energy operator for the electrons. The
second term is the attractive electrostatic potential of the nuclei, and the third
term is the repulsive electrostatic potential between the electrons.

This Hamiltonian is still too complicated to allow for an exact solution of its
eigenstates. The major complicating factor is the electron-electron interaction
term. One way to simplify this term is to assume that each electron moves in
a static average potential due to all the other electrons. This is the Hartree
approximation (HA). Energies calculated using the HA are usually much higher
than the actual values. This is because the HA takes electron-electron interac-
tion into account only in an average sense. It ignores electron correlation e�ects
which tend to lower the energy by keeping the electrons further apart. A better
approximation is the Hartree-Fock approximation (HFA). The HFA takes into
account one type of correlation e�ect called the exchange interaction. The ex-
change interaction is due to the fact that electrons with identical spins tend to
keep apart, thus lowering their energy. This is a physical manifestation of the
required antisymmetry of a many-electron wavefunction under the interchange
of two electrons.

A unifying framework for these approximations is the variational form of the
Schrodinger equation. Let Ψ(~r1s1,~r2s2, . . . ,~rNsN ) be an N -electron wavefunc-
tion, then the energy expectation value for this state is

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (21)

The expectation value is minimized when Y is the ground state eigenfunction
of the Hamiltonian. In the Hartree approximation, the assumption is that Y
can be expressed as a product of one-electron wavefunctions.

Ψ = ψ1(~r1s1)ψ2(~r2s2) · · ·ψN (~rNsN ) (22)

The particular ψi(~risi) that minimize Eq. 21 will then be given by the solution
of the Hartree equations:

− ~
2

2m
∇2ψi(~r)− Ze2

∑

~R

1

|~r− ~R|
ψi(~r) + e2

∑

j

∫ |ψj(~r′)|2
|~r−~r′| d~r

′ψi(~r) = Eiψi(~r)

(23)
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This is a one-electron Schrodinger equation with a potential due to the ions and
a charge density given by

ρ(~r) = −e
∑

j

|ψj(~r)|2 (24)

The problem with Eq. 22 however, is that Y is not antisymmetric. Maintain-
ing Y as a function of one-electron wavefunctions and making it antisymmetric
can be accomplished by expressing it as a determinant.

Ψ =

∣∣∣∣∣∣∣∣∣

ψ1(~r1s1) ψ1(~r2s2) · · · ψ1(~rNsN )
ψ2(~r1s1) ψ2(~r2s2) · · · ψ2(~rNsN )

...
... . . . ...

ψN (~r1s1) ψN (~r2s2) · · · ψN (~rNsN )

∣∣∣∣∣∣∣∣∣

In this case the particular ψi(~risi) that minimize Eq. 21 will be given by the
solution of the Hartree-Fock equations. These equations are the same as Eq. 23
except for the appearance of a new potential term that gives the e�ect of the
exchange interaction.

−e2
∑

j

∫
ψ∗j (~r′)ψi(~r′)ψj(~r)

|~r−~r′| d~r′δsisj (25)

Both the Hartree and Hartree-Fock approximations therefore, lead to single
particle Schrodinger equations with a periodic potential. Kohn and Sham [5, 7,
4] have furthermore shown that it is possible, in principle, to suitably modify the
potential so as to include all electron correlation e�ects. This leads to density
functional theory which we will not discuss here.

The conclusion then, is that in most, if not all cases, the interacting electron
problem can be cast into an equivalent problem involving independent electrons
moving in a static potential that takes into account the e�ect of the other
electrons.

9 Appendix B: The Variational Method for Eigen-
value Problems

If |ψ〉 is an eigenvector of the Hamiltonian, then H|ψ〉 = E|ψ〉 or

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 (26)

Let |φ〉 be an approximation to the eigenvector |ψ〉 such that |φ〉 = |ψ〉 + α|χ〉
where α is a constant ( possibly complex ). We can de�ne the energy associated
with |φ〉 as

E(φ) =
〈φ|H|φ〉
〈φ|φ〉 (27)
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so that as α→ 0, E(φ) → E. The error in the energy will then be

E(φ)− E =
〈φ|H|φ〉〈ψ|ψ〉 − 〈ψ|H|ψ〉〈φ|φ〉

〈ψ|ψ〉〈φ|φ〉 (28)

Using |φ〉 = |ψ〉+ α|χ〉 this simpli�es to

E(φ)− E = |α|2 〈χ|H −E|χ〉
〈φ|φ〉 (29)

The error is second order in α, so that as long as α is relatively small, the
eigenvalue approximation should be reasonably good.

If the eigenvalue problem is de�ned in a �nite dimensional space of dimension
N and the set of vectors |ui〉 where i = 1, . . . , N is a complete basis for the space
then an eigenvector can always be represented exactly as a linear combination
of the basis vectors |ui〉.

|ψ〉 =
N∑

i=1

ci|ui〉 (30)

Substituting this into the eigenvalue equation H|ψ〉 = E|ψ〉 we get
N∑

j=1

cjH|uj〉 = E

N∑

j=1

cj |uj〉 (31)

Multiply both sides by 〈ui| to get
N∑

j=1

〈ui|H|uj〉cj = E

N∑

j=1

cj〈ui|uj〉 (32)

Let 〈ui|uj〉 = Sij and 〈ui|H|uj〉 = Hij then we can write
N∑

j=1

(Hij − ESij)cj (33)

This is the usual �nite dimensional generalized eigenvalue problem. The solution
of this equation gives the exact eigenvalues of the Hamiltonian operator H. Note
that for an orthonormal basis 〈ui|uj〉 = δij and S = I.

If the space is in�nite dimensional or of dimension greater than N , then the
linear combination of vectors

∑N
i=1 ci|ui〉 will not in general be able to exactly

represent an eigenvector and will be an approximation to the actual eigenvector:

|φ〉 =
N∑

i=1

ci|ui〉 (34)

A familiar example of this is the expansion of a function as a fourier series:

f(x) =
∑

k

cke
ikx (35)
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In general there will be an in�nite number of terms in the series. However
for some functions - smoothly varying functions that look similar to sines and
cosines for example - a small �nite number of terms will reproduce the function
almost exactly. Indeed there are some functions that can be represented exactly
with a �nite fourier series. The key point is that the closer in form the basis
functions are to the function you are trying to expand, the fewer the number
of terms required to reproduce the function. Therefore taking Eq. 34 as an
approximation to the true eigenvector and substituting into Eq. 27 we get an
expression for the approximate eigenvalue

E(φ) =

∑N
ij c

∗
i cj〈ui|H|uj〉∑N

ij c
∗
i cj〈ui|uj〉

(36)

Let Sij = 〈ui|uj〉 and Hij = 〈ui|H|uj〉 then we can write

E(φ)
N∑

ij

c∗i cjSij =
N∑

ij

c∗i cjHij (37)

N∑

ij

(Hij − E(φ)Sij)c∗i cj = 0 (38)

We �nd the best approximation by minimizing E(φ) with respect to the coe�-
cients ci. This involves taking the derivative of the above equation with respect
to ci and setting dE(φ)/dci = 0 which gives

N∑

j

(Hij − E(φ)Sij)cj = 0 (39)

The di�erence between Eq. 39 and Eq. 33 is that in Eq. 33 E is an exact
eigenvalue since the eigenvector had an exact representation in the basis, but
here we do not know whether the eigenfunction can be exactly represented in the
basis so that E(φ) will in general be an approximation to the actual eigenvalue.

It can be shown that the E(φ)'s will always be an upper bound to the true
eigenvalues, i.e. the true eigenvalues will always be less than or equal to the
E(φ)'s.
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